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COMPARISON OF FINITE-DIFFERENCE SCHEMES 

FOR ANALYSIS OF SHELLS O F  REVOLUTION 

By Ahmed K. Noor* and Wendell B. Stephens 
Langley Research Center 

SUMMARY 

Several finite-difference schemes are applied to  the stress and free-vibration anal- 
ysis  of homogeneous isotropic and layered orthotropic shells of revolution. The study is 
based on a form of the Sanders-Budiansky first-approximation linear shell theory modi- 
fied such that the effects of shear deformation and rotary inertia are included. A Fourier 
approach is used in which all the shell stress resultants and displacements are expanded 
in a Fourier series in the circumferential direction, and the governing equations reduce 
to  ordinary differential equations in the meridional direction. 

While primary attention is given to finite-difference schemes used in conjunction 
with first-order differential-equation formulation, comparison is made with finite- 
difference scheme s used with other formulations. These finite -difference discretization 
models are compared with respect to  simplicity of application, convergence character- 
istics, and computational efficiency. Numerical studies are presented for the effects of 
variations in shell geometry and lamination parameters on the accuracy and convergence 
of the solutions obtained by the different finite-difference schemes. 

On the basis of the present study it is shown that the mixed finite-difference scheme 
based on the first-order differential-equation formulation and two interlacing grids for the 
different fundamental unknowns combines a number of advantages over other finite- 
difference schemes previously reported in the literature. 

INTRODUCTION 

In the past decade a substantial capability h a s  been developed for the numerical anal- 
ysis  of rotationally symmetric shells. The most widely used numerical analysis proce- 
dures for this class of shells are those based on numerical integration, finite elements, 
and finite differences. A number of publications exist which review and a s s e s s  the rela- 
tive meri ts  of these three numerical techniques (see, for example, refs. 1, 2, and 3). 

* Associate Research Professor  in Engineering, The George Washington University, 
Joint Institute for  Acoustics and Flight Sciences. 



The large majority of existing finite-difference programs for rotationally sym- 
metric shells a r e  based on either the displacement formulation (with the fundamental 
unknowns being displacement parameters) (ref. 4), or the Budiansky-Radkowski second- 
order differential-equation formulation (refs. 1, 5, and 6). While the advantages of using 
a first-order differential-equation formulation have been widely recognized in numerical 
integration techniques and in matrix progression method (refs. 7 to ll), only limited use 
of this formulation has been made in the case of finite differences (refs. 1 2  and 13). 

The objective of this paper is to a s ses s  the relative meri ts  of several finite- 
difference schemes used for the linear elastic s t r e s s  and free-vibration analysis of 
rotationally symmetric shells. Primary attention is given to mixed finite-difference 
schemes used in conjunction with the first-order ordinary-differential-equation formula- 
tion. However, some consideration is given to  finite-difference schemes used with the 
displacement formulation and with the Budiansky-Radkowski second-order differential 
equations, 

The term "mixed" re fers  to the fact that both stress resultants and displacements 
a r e  chosen as primary variables. The analytical formulation is based on the Sanders- 
Budiansky linear shell theory. The fir st- or der ordinary- differential- equation formula- 
tion of that theory is modified such that the effects of shear deformation and rotary inertia 
are included. 

SYMBOLS 

Aij 
dimensionless elastic compliance coefficients of the shell 

bl,b2, - * 47,bC dimensionless elastic coefficients of the shell 

C. . ,F. .  Dij (i,j=1,2,3) dimensionless elastic stiffnesses of the shell 4 11' 

Eo reference extensional rigidity of the shell 

(i,j=1,2, . . . ,5 )  elastic stiffness of the kth layer of the shell (k) 
'ij 
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E elastic modulus for isotropic materials 

e r r o r  index (see eq. (19)) Ef 

elastic moduli in the direction of the fibers and normal to it, 
re s pe ctive ly 

E ~ ) E ~  

shear moduli in the plane of the fibers and normal to it, respectively 
G ~ ~ 9 G ~ ~  

h local thickness of the shell (see fig. 1) 

distance from the reference (middle) surface to the top and bottom 
surfaces of the kth layer, respectively 

hk’hk- 1 

L reference length of the shell 

.e finite-difference interval in the meridional direction 

Mg,M,,Mge,MBg moment s t ress  resultants (see fig. 2) 

m Fourier harmonic in the circumferential direction 

Nc,Ng,NEo,Net direct s t r e s s  resultants (see fig. 2) 

n, 

modified (boundary) s t r e s s  resultant 

- 
Ngo,Mga symmetric stress resultants 

NL 

n 

number of layers of laminated shells 

number of finite-difference intervals in the meridional direction 

’1, m9’2, m vectors of external forces 

amplitude of load harmonic PO 

Pr,PB,Pt intensity of external loading in the coordinate directions (see fig. 2) 
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transverse shear s t r e s s  resultants (see fig. 2) 

radius of toroidal c ross  section 

principal radii of curvature in the meridional and circumferential 
directions respectively 

normal distance from the shell axis to the reference surface 
(see fig. 1) 

time 

displacement components of the reference surface in the coordinate 
directions (see fig. 2) 

curvilinear coordinate system (see fig. 1) 

dimensionless frequencies 

,Poisson’s ratio for isotropic materials 

Poisson’s ratio measuring s t ra in  in T-direction due to uniaxial normal 
stress in the L-direction 

dimensionless meridional and circumferential coordinates, 
respectively (see fig. 1) 

density of the kth layer of laminated shells 

nondimensional geometric parameters  4 
4 



@e rotation components (see fig. 2) 

{ $ J ~ }  and {Hm} vectors of fundamental unknowns defined by equations (14) and (15) 

w 

L1 row matrix 

circular frequency of vibration of the shell 

{ }  column matrix 

[ I  rectangular or square matrix . 
Subscripts : 

i generic finite-difference station 

L,T 

m 

denote the direction of fibers and the transverse direction 

denotes the mth Fourier harmonic 

Finite - difference models : 

DW displacement for mulation, whole - station scheme 

sw second-order formulation, whole- station scheme 

Mw mixed formulation, whole-station scheme 

MHS 1, MHS 2 mixed formulation, half -station scheme, single grid 

MHI mixed formulation, half- station scheme, interlacing grid 

MATHEMATICAL FORMULATION 

Shell Geometry 

Figure 1 shows the geometric characteristics of a rotationally symmetric shell as 
follows: h is the local thickness of the shell; r is the normal distance from the shell 
axis to the reference surface; and R2 a r e  the principal radii  of curvature in the 
meridional and circumferential directions, respectively. The expressions for R1 and 

R2 are given in reference 5. 

R1 
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To cast the problem in nondimensional form, the two dimensionless coordinates 
5 and 8 a r e  used, where 

x2 8 = -  
r 

in which x1 and x2 are the meridional and circumferential coordinates, respectively, 
and L is a reference length. 

Also, as in reference 5, the following dimensionless geometric parameters  are 
introduced : 

r 
P = -  

L 

- L 
"5 - -  

R1 

- L 
LiO - - 

R2 
and 

y = -  4. /d5 
P 

Reduction to a One-Dimensional Problem 

The analytical formulation is based on a form of the Sanders-Budiansky linear 
theory modified such that the effects of shear deformation and rotary inertia are included. 

If the shell s t r e s s  resultants and displacements as well as the external loads a r e  
expanded in a Fourier series in the circumferential direction, then 
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and 

P, = t P,,, sin m e 
m=O 

where 

in which 
reference 5.  

multiplied by eLt where w is the circular frequency of vibration of the shell. 

and 5, e o  are the modified (symmetric) s t r e s s  resultants defined in 

For free-vibration analysis, the right-hand sides of equations (7) and (8) must be 

Governing Differential Equations 

The s t r e s s  and free-vibration problems for shells of revolution can be formulated 
in a number of different ways. For example, such problems can be formulated in t e rms  
of (1) the three displacement components of the reference surface, (2) coupled second- 
order ordinary differential equations in the generalized displacements and meridional 
moment s t r e s s  resultant, or (3) first-order ordinary differential equations in the shell 
s t r e s s  resultants and displacements. In the absence of shear deformation, the governing 
equations of the displacement formulation for cylindrical shells a r e  given in reference 14, 
and the governing equations of the second-order formulation for general shells of revolu- 
tion a r e  presented in references 1 and 5. These equations are not reproduced here. On 
the other hand, the first-order equation formulation which has been extensively studied 
herein is outlined below. Discussion is focused on the choice of the fundamental unknowns 
and the form of governing differential equations in such a way as to enhance the compu- 
tational efficiency of the finite- diff erence discretization. 

The fundamental unknowns of the first-order differential-equation formulation used 
herein are chosen to be the shell quantities that appear in the statement of the boundary 
(or interface) conditions along a parallel circle. These include: the five generalized 
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-.- 
displacements Ue, U,, W, qe, and @6; and the five s t r e s s  resultants Ne, Ne@, 
QE, Me, and (see fig. 2). 

tions for the mth Fourier harmonic can be arranged to yield a symmetric coefficient 

50 
By properly ordering the fundamental unknowns, the governing differential equa- 

matrix of the fundamental unknowns as follows: 

where 

d d - -  
d e  

PMg,m. '@,m. wm.  
{Hm}T = 9 - 9 -  ' %,m 1 

LEo L L 

c- 

The t e rm Co is a reference extensional rigidity of the shell. The shell stiffnesses and 
compliances a r e  given in appendix A. The [Sa], [Sbl, and [SI a r e  5 X 5 matrices, the 
first two matrices a r e  symmetric; superscript T denotes transposition; the matrix [I1] 
is a diagonal matrix; [ma] and [m 1 a r e  symmetric mass matrices; and {Pl,m) and 

(P2,m) 
mentioned matrices a re  given in  appendix B. For stress-analysis problems L = 0 and 
for free-vibration problems {Pl,m} = {P2,,} = 0. 

The choice of the fundamental unknowns shown in equations (14) and (15) is similar 
to that suggested by Goldberg (ref. 7); however, the present formulation utilizes the geo- 
metric parameter (e) in defining the unknowns for stress resultants. This particular 
choice allows casting the governing equations in  a symmetric form and minimizes the 
number of nonzero te rms  in the matrix [SI. 

b 

are vectors of external forces. The formulas for the coefficients of the afore- 

8 



FINITE -DIFFERENCE DISCRE TI ZATION 

The finite-difference models used with the displacement and second-order 
differential-equation formulation were based on the whole-station approximation. These 
two models will be referred to subsequently as DW (displacement, whole-station) and 
SW (second-order, whole-station) schemes. The latter model, SW, was f i rs t  suggested 
by Budiansky and Radkowski (ref. 5) and developed into an operational program "SALORS" 
in reference 15. Since the DW and SW schemes have been discussed in  references 14 and 
15, the discussion is confined here to the discretization of the first-order differential 
equations. To this end, it is convenient to express equations (12) as follows: 

and 

Four finite-difference models have been used for the discretization of equations (16). 
These models differ by the difference-quotient expressions used for approximating the 
first derivatives and by the location of the points at which the difference equations a r e  
applied. The four models can be identified as mixed whole station (MW), mixed half- 
station, single grid (MHS 1 and MHS 2), and mixed half-station, interlacing grid scheme 
(MHI). The two schemes MHS 1 and MHS 2 differ one from the other in the difference- 
quotient expressions used for approximating the first derivatives. For shells with con- 
stant elastic and geometric characteristics, the discrete models obtained by these two 
schemes a r e  identical. 

The characterist ics of the four finite-difference models M W ,  MHS 1, MHS 2 ,  and 
MHI along with those of the two models DW and SW a r e  summarized in table 1. While 
three of the four schemes used with the first-order equation formulation, schemes MW, 
MHS 1, and MHS 2, have been reported previously in the literature, the fourth scheme 
(MHI) which was developed by the authors represents the prime thrust of the present 
work and is described in detail below. It should be noted, however, that other inter- 
lacing grids have been suggested and used previously by others (e.g., refs. 4 and 16). 

The basic idea of the mixed half-station interlacing-grid scheme (MHI) used in the 
present study is to define the first derivatives of each of the fundamental unknowns at 
points lying midway between the points of definition of the same unknowns. This can be 
accomplished by using two se ts  of interlacing grids for the two groups of fundamental 
unknowns {H,) and {$m}. The quantities m} and {dH,) in  equations (16) a re  
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defined at points lying midway between the points of definition of 
For convenience both {Hm} and {$  m} are defined at the boundaries and interfaces. 

The finite-difference equations which simulate the governing equations (eqs. (16)) 

{ Hm} and {d# m}. 

a r e  obtained b y  replacing the first derivatives in these equations by an appropriate 
difference-quotient expression, depending on the order of approximation desired (see 
ref. 17). 

Also, due to the coupling between {IC, m} and {d+m} in equations (16a) and be- 

in the second equation have 
tween {Hm} and 
[SI), the values of {+ m} in the first equation and 
to be obtained through interpolation between their values at their respective control 
points. As will be shown subsequently, the accuracy of solutions is less  sensitive to this 
interpolation than to the averaging of the difference-quotient expressions, which is used 
in conventional schemes (with all the fundamental unknowns and their derivatives defined 
at  the same set of points). 

{dHm} in equations (16b) (i.e., due to the presence of the matrix 

{Hm} 

In order to maintain the number of unknowns equal to the number of equations, only 
the five equations (16a) a r e  applied at the boundary, the other five equations a r e  replaced 
by the five boundary conditions. The accuracy of the modified scheme presented herein, 
however, was found to be insensitive to the particular choice of the five equations to be 
applied at the boundary. A summary of the equations applied at the different nodal points 
is given in figure 3. Central differences a r e  used at interior points and backward (or for- 
ward) unsymmetric differences a r e  used at points lying on o r  near the boundaries (or 
interfaces). The number of such specialized unsymmetric difference formulas is de- 
pendent on the order of the interior discretization e r r o r  used in the finite-difference 
scheme (see ref. 17). 

A s  an illustration, the difference equations are shown for  the MHI scheme. These 
2 difference equations of order O(4 ), where 8 is the finite-difference interval, a t  generic 

interior points i and i+l, a r e  given by 
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The resulting finite-difference field equations can be represented in the following 
compact form: 

where [Km] and [&] contain the generalized stiffness and mass distribution, {Zm} 
is the vector of unknowns composed of the subvectors {Hm}i and {+m}i+l at the 
various finite-difference stations and {6m} is the vector of external forces and thermal 
effects. Equations (18) are banded and their bandwidth depends on the orders  of the in- 
ter ior  and boundary approximations. The use of interlacing grids results in reducing 
both the interior discretization e r r o r  and the bandwidth of the resulting finite-difference 
equations and, therefore, the computational efficiency of the scheme is improved. That 
this is indeed so can be seen from figure 4, where a schematic representation is given of 
the finite-difference equations corresponding to the four schemes MW, MHS1, MHS2, and 
MHI. 

The four finite-difference schemes MW, MHS 1, MHS 2,  and MHI have a number of 
advantages also shared with other numerical approximation techniques based on the first- 
order equation formulation. These include the simplicity of the form of the governing 
differential equations, the absence of the derivatives of the elastic characterist ics of the 
shell in these equations, and the simplicity of numerical discretization and of handling the 
boundary and interface conditions. A s  a result of the cited advantages, the effort required 
in the computer implementation of these difference schemes (coding, debugging, and veri- 
fication) has been found to be significantly reduced. 

EIGENVALUE EXTRACTION TECHNIQUE 

For free-vibration problems, a variant of the inverse-power method with shifts 
similar to that presented in reference 1 is used for  the determination of the natural f re-  
quencies and mode shapes. In the present study, advantage was  taken of the banded form 
of the matrix [Km] and a direct, Gaussian elimination procedure was used for  each 
iteration to evaluate the new trial vector {Zm>* 

NUMERICAL STUDIES 

In an attempt to  assess the relative meri ts  of the different finite-difference schemes, 
a large number of stress and free-vibration problems of homogeneous isotropic and layered 
orthotropic shells of revolution were solved using the aforementioned six finite-difference 
schemes. 
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The various finite-difference models a r e  compared with respect to simplicity of 
application, convergence characteristics, and computational efficiency. The results of 
four typical problem sets  representing different shell geometries and wall construction 
a r e  discussed with respect to convergence characterist ics herein. These problems are:  

a. Free vibrations of isotropic cylindrical shell 
b. Asymmetric s t resses  in isotropic toroidal shell subjected to a uniform normal 

c. Asymmetric f ree  vibrations of layered orthotropic toroidal shell 
d. Free vibrations of layered orthotropic spherical shells 

pressure 

The four difference models based on the first-order equation formulation ( M W ,  
MHS 1, MHS 2, and MHI schemes) were applied to all four problems, and the second-order 
equation model (SW scheme) was applied to the first two problems. Comparison was made 
with the results obtained using the displacement model (DW scheme) for the first problem 
(ref. 14). 

In the first two problems in order  to provide a meaningful comparison with finite- 
difference schemes SW and DW, the tracing constants kr and ka (where a = 1,2) in 
the appropriate equations in appendix B, were set  equal to 0 and lo4, respectively. This 
resulted i n  dropping the rotary inertia te rms  and suppressing the shear deformation in  
these problems. 

Free  Vibrations of Cylindrical Shells 

The first problem considered was that of asymmetric f ree  vibrations of isotropic 
cylindrical shells with clamped edges. The characteristics of the shells considered a r e  
shown in figure 5.  This problem was taken from reference 14 where it was concluded 
that the accuracy of the finite-difference method, based on a differential-equation formu- 
lation in  terms of the three midsurface displacements, deteriorates rapidly as the length 
ratio L/R increases or the thickness ratio h/R decreases. Therefore, in order  to 
assess  the accuracy and rate of convergence fo r  the six finite-difference schemes, the 
long thin shell shown in figure 5 w a s  selected. For this problem it was found that both 
the shear deformation and rotary inertia were negligible and, therefore, the use of 
schemes DW and SW is justified. 

The nondimensional minimum frequencies obtained by the different finite-difference 
schemes are summarized in table 2 and the corresponding mode shapes and modal s t resses  
obtained by schemes MHS 1, MHS 2, and MHI with 20 finite-difference intervals a r e  shown 
in figure 6. 
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A s  is seen from this figure the three schemes MHS 1, MHS 2,  and MHI accurately 
predict the mode shape and the modal stress-resultant Ne, but for the modal moment 
Me, scheme MHI misses the spike at the boundaries and schemes MHS 1 and MHS 2 give 
an oscillatory type of variation. 

The results presented in table 2 show that the frequencies obtained by the mixed 
half-station interlacing grid finite-difference scheme (MHI) a r e  more accurate than the 
corresponding frequencies obtained by other schemes (for the same number of finite- 
difference intervals). The e r r o r  in the frequency obtained by using MHI scheme with 
10 finite-difference intervals is only 1.5 percent. On the other hand, the frequencies 
obtained by DW and SW schemes (based on the displacement and the four second-order 
equations) a r e  considerably less accurate than those obtained by all other schemes based 
on the use of first-order differential-equation formulation. Also, the frequencies ob- 
tained by DW and SW schemes a r e  identical to four significant digits. This is because 
the discretized equations in the SW scheme for cylindrical shells can be reduced to se t s  
of equations identical to those obtained by direct  discretization of the three differential 
equations of the displacement formulation, DW scheme (see ref. 17). Similar reasoning 
can be used to explain the fact that the frequencies obtained by MHS 1 and MHS 2 schemes 
are identical and those obtained by the MHI scheme are identical to the ones obtained by 
the MW scheme using twice as many finite-difference intervals (compare the correspond- 
ing entries in table 2). 

Stress  Analysis of a Closed Toroidal Shell 

A s  a second example consider the asymmetric stress analysis of an isotropic closed 
toroidal shell subjected to a normal pressure which is uniform in the meridional direction. 
The characterist ics of the shell and loading a r e  shown in figure 7. 

Solutions have been obtained using the finite-difference schemes SW, MW, MHS 1, 
MHS 2,  and MHI fo r  the asymmetric s t r e s s  analysis for an  internal pressure loading which 
is uniform in the meridional direction. Only the second Fourier harmonic in the circum- 
ferential direction is considered (m = 2). For  this shell and loading, the shear deformation 
was found to be negligible and therefore the use of scheme SW is justified. Due to sym- 
metry of the shell and loading, only half the meridian was considered and the symmetric 
boundary conditions at the ends a r e  {qm} = 0. 

As a quantitative measure of the relative accuracy of the s t ress  resultants and dis- 
placements obtained by the different finite-difference schemes, the following e r r o r  index 

Ef (a function of f )  has been introduced: 

13 



where 

f stands for any of the stress resultants or generalized displacements 

fi and fi a r e  the exact and approximate values, respectively, of the function at  
the ith finite-difference station. The exact value is taken to be the converged 
solution, and the approximate value refers to the value obtained by each of the 
finite-difference schemes. 

1 is the maximum absolute value of the exact (or converged) function in the I fmax 
interval of interest (half the meridian of the shell in  this case). 

n+ l  is the total number of finite-difference stations used in  the approximate 
solution. 

In order to simplify comparison with other schemes, the values of the unknowns 
{$m} in scheme MHI were computed at the same nodal points as the unknowns 
This was done after obtaining the modified solution. As an example, at the node point i 

{Hm>. 

where { Q ~ } ~ - ~  and {4m}i+l a r e  the values of {+m} at points is1 obtained from 
the modified solution. 

While the e r r o r  index Ef (eq. (19)) is similar to the root-mean-square e r ro r ,  it 
has the added advantage that it gives less  weight to the smaller values of the function, 
which a r e  usually of less practical interest. The smaller the e r r o r  index Ef, the more 
accurate the approximate solution (obtained by the difference scheme) is. 

The values of the e r r o r  index Ef for each of the s t r e s s  resultants and generalized 
displacements obtained by the different finite-difference schemes using 10, 20, 30, and 
40 intervals in half the shell meridian a r e  summarized in table 3. Also, figure 8 shows 
plots for the s t r e s s  resultants and displacements obtained by schemes SW, MW, and MHI. 
Also shown a r e  the essentially exact results (converged solution) for this problem. Solu- 
tions obtained by schemes MHS 1 and MHS 2 a r e  not shown in order  to avoid complicating 
the figure. To provide a reasonable comparison among the three finite-difference solu- 
tions shown in figure 8, the total number of algebraic equations for  each method was 
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comparable. This was  achieved by using 10 finite-difference intervals in half the shell 
meridian in schemes MW and MHI and 20 intervals for scheme SW. Note that if the shear 
deformation is neglected, the governing differential equations used in  schemes MW and 
MHI reduce to eight and the total number of algebraic equations for each method will 
almost be identical. Figure 8 and table 3 clearly show the high accuracy of the predic- 
tions of the proposed scheme (MHI) and that this accuracy occurs for both displacement 
and s t r e s s  quantities in  this case. 

Moreover, it was found that the accuracy of the solutions obtained by scheme MW 
was very sensitive to the particular choice of the five equations applied at the boundary. 
The best accuracy was obtained when the boundary conditions were applied in a manner 
similar to that used in finite-element method, wherein the 10 equations (eqs. (12)) a r e  
applied at the boundary, then the boundary conditions replace the equations with the 
specified boundary quantities (in this case displacement, rotation components, and stress 
resultants) appearing along the diagonal. 
were obtained for the aforementioned choice. 
solutions obtained by scheme MHI was found to be insensitive to the choice of the 5 equa- 
tions to be applied at the boundary. 

The results shown in table 3 for scheme M W  
On the other hand, the accuracy of the 

Asymmetric Free Vibrations of Laminated Orthotropic Toroidal Shell 

In order to  study the effect of material orthotropy of the shell on the accuracy and 
rate of convergence of the different finite-difference schemes, the free-vibration problem 
of an eight-layered, graphite-epoxy composite shell was studied. The shell had the same 
dimensions and total thickness as that of the isotropic shell considered previously (see 
fig. 7). Both shear deformation and rotary inertia were accounted for and consequently 
scheme SW was not used. 

An indication of the accuracy and rate of convergence of the minimum frequency 
obtained by schemes MW, MHS 1, MHS 2, and MHI is shown in figure 9. The results ob- 
tained by schemes MHS 1 and MHS 2 were almost identical. A s  shown in figure 9 the 
frequencies obtained by all schemes converged to the same value, but those obtained by 
scheme MHI had a faster rate of convergence. 

F ree  Vibrations of Layered Composite Spherical Shell Segment 

A s  a final example consider the f ree  vibrations of an eight layered, graphite-epoxy 
spherical-shell segment with clamped edges. The f ibers  of the different layers alternate 
between the circumferential and meridional directions, with the fibers of the top layer 
running in the meridional direction. Shells with different r i se  ratios, ranging from 
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shallow to deep shells, have been studied. The characterist ics of these shells are shown 
in figure 10. For all these shells solutions were obtained using the first order  difference 
models (schemes MW, MHS 1, MHS 2,  and MHI). 

The solutions obtained using the different schemes are summarized in table 4. As 
can be seen from this table scheme MHI is superior to all other schemes. The accuracy 
of the solutions obtained by this scheme does not deteriorate as the shell becomes 
shallower. 

CONCLUDING REMARKS 

A comparison is made between a number of finite-difference schemes for analysis 
of shells of revolution. Pr imary attention is given to  finite-difference schemes based on 
the use of first-order ordinary differential-equation formulation; however, some consid- 
eration is given to  both the displacement and the second-order differential-equation models. 
The various finite-difference discretization models are compared with respect to simplic- 
ity of application, convergence characteristics, and computational efficiency. 

On the basis of the present study i t  is shown that the mixed finite-difference schemes 
have a number of major advantages in common with other numerical approximation tech- 
niques based on the first-order differential-equation formulation. These include the s im- 
plicity of the form of the governing differential equations, the absence of the derivatives 
of the elastic characteristics of the shell in these equations, and the simplicity of numeri- 
cal  discretization and of handling boundary and interface conditions. A proper selection 
of the fundamental unknowns and a proper ordering of the governing equations can lead to 
further simplifications which produces a symmetric coefficient matrix in the governing 
equations. Of all the finite-difference schemes used with the first-order equation formu- 
lation, the scheme presented herein, which is based on the use of the two interlacing grids 
for  the different fundamental unknowns, leads to the minimum bandwidth of the finite- 
difference field equations and the maximum accuracy of the solution and, therefore, is 
computationally most efficient. 

Langley Research Center, 
National Aeronautics and Space Administration, 

Hampton, Va., September 19, 1973. 
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APPENDIX A 

ELASTIC COEFFICIENTS OF LAMINATED SHELLS 

Elastic Stiffnesses of the Layers 

The stiffness coefficients of the Mh orthotropic layer of the shell are given by: 

and 

(k) 
G~~ symmetric 

l o  ($4 
O I  LT 

i = 1,2,3 

where subscripts L and T denote the direction of fibers and the transverse direction, 

vLT is the Poisson's ratio measuring the strain in the T-direction due to  a uniaxial 
normal s t r e s s  in  the L-direction, 

and superscript k re fers  to the kth layer. 
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APPENDIX A - Concluded 

Elastic Coefficients of the Shell 

The dimensionless elastic stiffnesses of the shell are given by: 

l and 

where 

i = 1,2,3 
j = 1,2,3 

NL = total number of layers of the shell 

hk and hk-1 

eo is a reference extensional rigidity of the shell 

are the distances from the reference surface to the top and bottom 
surfaces of the kth layer, respectively 

The dimensionless elastic compliances of the shell A - .  1J ' Bij,Gij (i,j = 1,2,3) and 
Aij ( i , j  = 4,5) a r e  obtained by inversion of the matrix of the elastic stiffnesses as follows: 

[Aij] = [Cij]-' 

The elastic stiffnesses and compliances of the shell are functions of the meridional 
coordinate 5. 
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APPENDIX B 

FORMULAS FOR COEFFICIENTS IN GOVERNING 

DIFFERENTIAL EQUATIONS 

The independent nonzero te rms  of the submatrices [Sa], [Sb] , and [S] in equa- 
tions (17) a re  given by: 

bl q1 = - 
P 

b2 sT2 = - 
P 

mbcb3 
s?3 = p 

S14 a = u0bcb3 - ut 

s;5 = mbcb4 

S t 2  = - b5 

P 

P 

bc b6 si3 = - 
P 

S24 = w 8 b c b 6  

S34 a = -mu0 ( b,G22 + $) 
n 
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APPENDIX B - Continued 

2 S14 = -bcufG22il - - k2 

PA55 

S4"5 = m b c B 2 2 ~  + ( ") A55 

b 
'14 = 

-m (ma - me) 

P 
s;5 = 

s22 b = -bcPY 2 A22 

s;4 = -1 

b m  
'25 = /j 

b A33 
s33 = - 

P 

- - 1 
b 2 - uE)A33 + B33 

'35 = P 
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APPENDIX B - Continued 

b A44 s44 = - 
p kl 

1 2 - ( - UC) A33 - k e  - 9 B33 + G33 Sk5 = 4 
P 
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APPENDIX B - Continued 

where bl to b7 a r e  dimensionless coefficients given by: 

bl = A11 + bc ( 4 1 2  (A12G22 - B12 B22) + B12 (A12B22 - A22B12)) 

b2 = B1l - bc (A12 (B12G22 - B22G12) + B12 (A22G12 - B12B22)) 

b3 = A12G22 - B12B22 

b4 = -A12B22 + A22B12 

b5 = G1l - bc p 1 2  (B12G22 - B22G12) + G12 (A22G12 - B12B22)) 

b6 = B12G22 - B22G12 

b7 = -B12B22 + G12A22 

with 

2 -1 
bc = (A22G22 - B22) 

and kl and k2 a r e  tracing constants (sALear coefficients). 

The matrix [I1] is a 5 x 5 diagonal submatrix given by: 

-1 
1 

1 

The nonzero terms in the symmetric mass  matrices [ma] and [mb] a r e  
given by : 

a m33 = k m O  

a m35 = k r  k m l  



APPENDIX B - Concluded 

a m44 = k m o  

a m55 = kr k m2 

and 

b mll = k m g  

b m12 = k r k m 1  

where 

L2 k = p -  

EO 

kr is a tracing constant and 

with p F '  being the mass density of the kth layer of the shell. 

The components of the load vectors a r e  given by: 

{Pl,m}T = P Z T  " 1 -  Po,m 
cO 

23 
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TABLE 2. - CONVERGENCE OF MINIMUM NONDIMENSIONAL FREQUENCY 

OBTAINED BY DIFFERENT FINITE-DIFFERENCE SCHEMES 

SW and DW 

- 
k lamped  isotropic cylindrical shell with h/R = 0.002, 

Mw I MHS 1 and MHS 2 

L/R = 10, v = 0.3, and m = 4; h = l O O w R  d-1 

2.101 
lo I a(1.393) 
20 

30 

1.689 
(1.120) 
1.593 

(1.056) 
1.501 I (0.995) 

1.549 
(1.027) 
1.517 

(1.006) 
1.512 

(1.003) 

(0.985) 
1.506 

1.508 
(0.999) 

(1.000) 
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TABLE 3.- ERROR INDEX FOR STRESS RESULTANTS AND 

GENERALIZED DISPLACEMENTS OBTAINED BY 

DIFFERENT FlNITE - DI F FERENCE SCHEMES 

r 1 

Mw MHS 1 MHS 2 I n 
Values of Et x 100 for - I 

MHI 

10 6.935 1.043 1.275 I 1.121 
20 .339 .186 .250 .179 
30 .132 .068 .093 .065 
40 .065 .033 .046 .031 

10 35.352 6.956 5.813 
20 4.602 1.620 1.288 
30 1.426 .652 .531 
40 .675 .359 .308 

f = Me 
26.369 6.683 5.248 2.320 

3.990 1.420 1.056 .459 
1.232 .536 .392 .167 

40 -571 .265 .193 .081 

2.369 
.515 
.250 
,184 

I I I I 

10 47.157 8.385 7.760 
20 5.301 1.838 1.663 
30 1.610 .692 .623 
40 .742 .341 .307 

1.524 
.294 
.107 
.052 

10 42.524 7.737 6.769 
20 5.112 1.744 1.444 
30 1.550 .664 .543 
40 .716 .329 .268 

f = u>F 
10 37.404 6.221 5.590 
20 4.256 1.470 1.277 
30 1.320 .581 .503 
40 .622 .307 .269 

2.096 
‘355 
.129 
.062 

1.390 
.270 
.115 
.096 

10 43.012 7.804 6.896 
20 4.939 1.703 1.426 
30 1.492 .641 .531 
40 .687 .3 16 .261 

28 

1.326 
,231 
.084 
.040 

I 7.804 1.703 

40 .687 .3 16 .261 I 

1.326 I ,231 
.084 
.040 1 

10 30.989 6.778 5.355 
20 4.5 48 1.621 1.221 
30 1.384 .667 .520 
40 .648 .376 .311 

2.806 
.549 
.223 
.162 



TABLE 4. - CONVERGENCE O F  MINIMUM NONDIMENSIONAL FREQUENCY 

OBTAINED BY DIFFERENT FINITE-DIFFERENCE SCHEMES 

Flamped graphite-epoxy spherical shell with h/R = 0.002; m = 2; X1 = cu b%] 

MW MHS 1 n MHS 2 MHI 

10 
20 
30 
40 

2.7962 2.7830 2.8614 2.8403 
2.8099 2.7909 2.8302 2.8257 
2.8146 2.8095 2.8266 2.8239 
2.8166 2.8136 2.8246 2.8231 

2.8217 

3.6489 
3.6892 I 3.6614 

3.6634 

I 10 
I 3.4550 1 3.6456 

20 3.6140 3.6789 
30 3.6411 3.6704 3.6760 
40 3.6508 3.6666 3.6713 3.6640 

I 3*7724 

29 

3.6644 



Figure 1.- Shell geometry. 

Qe 

Right-hand rule 
is used for rotations 
and moments. 

Figure 2. - Sign convention for  s t r e s s  resultants and displacements. 
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vectors 

Boundary 
effects 

Boundary 
effects 

(a) MW scheme. 

Figure 4. - Schematic representation of the finite-difference equations 
obtained by the first-order equation schemes. 
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(b) MHI scheme. 

Figure 4. - Continued. 
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(c) MHS 1 scheme. 

Figure 4. - Continued. 

External force 
vectors 

Boundary effects 

Boundary effects 



External 
force 

vectors 

Boundary 
effects 

Boundary 
effects 

(d) MHS 2 scheme. 

Figure 4. - Concluded. 
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h 

h/R = 0.002 

v = 0.3 
L/R = i o  

Figure 5. - Characterist ics of isotropic cylindrical 
shell used in  the present study. 
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Exact solution l- B MHI solution 

I 

I 0 MHS 1 and MHS 2 solutions 
I ! I 

0 .2 .4 .6 .a 1 .o 
Meridional distance, 5 

(a) Normal displacement, W. 

Figure 6.- Mode shapes and modal s t r e s s  resultants obtained by MHS 1, MHS 2, 
and MHI schemes for  isotropic circular cylindrical shell. 
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(b) Meridional stress resultant,  NE. 

Figure 6. - Continued. 
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Figure 6. - Concluded. 
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h 

PO 

h/R 3: 0.02 

v = 0.30 
a/R = 0.50 

u r i e r  harmonic in circumferential 
direction, m = 2 

pr = po cos m e  

Figure 7. - Characteristics of toroidal shell and loading. 
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~~~ 1 - Converged solftion 
--E-- MWscheme n l 1 0  
..-O..... MHI scheme 
-.-+.- SW scheme n I 20 
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Meridional distance, 5 

(a) Normal displacement. 
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0 .2 .4 .6 .E 1 

Meridional distance, E 

(c) Meridional s t r e s s  resultant. 
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Meridional distance, 5 

(b) Circumferential displacement. 

-.02 
0 .2 .4 .6 .a 1 .o 

Meridonnl distance, 5 

(d) Meridional moment s t r e s s  resultant. 

Figure 8. - Accuracy of s t r e s s  resultants and displacements obtained by 
different finite-difference schemes for a toroidal shell with a uni- 
form internal pressure p,; m = 2. 
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Figure 9. - Convergence of minimum frequency obtained by different finite- 
difference schemes based on the first-order equation formulation 
(graphite-epoxy toroidal shell with h/R = 0.02; m = 2). 
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Fibers of top layer in the meridional direction 

Middle surface 

V vLT= 0.25 
I I h/R * 0.002 

Subscripts L and T re fer  to  direction of 
fibers' m-d transverse direction, 

respectively. 

Figure 10. - Eight-layered graphite-epoxy spherical shell with clamped edges. 
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